If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = x2(x + -2)[(x + 3)(x + 3)] Reorder the terms: 0 = x2(-2 + x)[(x + 3)(x + 3)] Reorder the terms: 0 = x2(-2 + x)[(3 + x)(x + 3)] Reorder the terms: 0 = x2(-2 + x)[(3 + x)(3 + x)] Multiply (3 + x) * (3 + x) 0 = x2(-2 + x)[(3(3 + x) + x(3 + x))] 0 = x2(-2 + x)[((3 * 3 + x * 3) + x(3 + x))] 0 = x2(-2 + x)[((9 + 3x) + x(3 + x))] 0 = x2(-2 + x)[(9 + 3x + (3 * x + x * x))] 0 = x2(-2 + x)[(9 + 3x + (3x + x2))] Combine like terms: 3x + 3x = 6x 0 = x2(-2 + x)[(9 + 6x + x2)] Multiply (-2 + x) * [9 + 6x + x2] 0 = x2(-2[9 + 6x + x2] + x[9 + 6x + x2]) 0 = x2([9 * -2 + 6x * -2 + x2 * -2] + x[9 + 6x + x2]) 0 = x2([-18 + -12x + -2x2] + x[9 + 6x + x2]) 0 = x2(-18 + -12x + -2x2 + [9 * x + 6x * x + x2 * x]) 0 = x2(-18 + -12x + -2x2 + [9x + 6x2 + x3]) Reorder the terms: 0 = x2(-18 + -12x + 9x + -2x2 + 6x2 + x3) Combine like terms: -12x + 9x = -3x 0 = x2(-18 + -3x + -2x2 + 6x2 + x3) Combine like terms: -2x2 + 6x2 = 4x2 0 = x2(-18 + -3x + 4x2 + x3) 0 = (-18 * x2 + -3x * x2 + 4x2 * x2 + x3 * x2) 0 = (-18x2 + -3x3 + 4x4 + x5) Solving 0 = -18x2 + -3x3 + 4x4 + x5 Solving for variable 'x'. Remove the zero: 18x2 + 3x3 + -4x4 + -1x5 = -18x2 + -3x3 + 4x4 + x5 + 18x2 + 3x3 + -4x4 + -1x5 Reorder the terms: 18x2 + 3x3 + -4x4 + -1x5 = -18x2 + 18x2 + -3x3 + 3x3 + 4x4 + -4x4 + x5 + -1x5 Combine like terms: -18x2 + 18x2 = 0 18x2 + 3x3 + -4x4 + -1x5 = 0 + -3x3 + 3x3 + 4x4 + -4x4 + x5 + -1x5 18x2 + 3x3 + -4x4 + -1x5 = -3x3 + 3x3 + 4x4 + -4x4 + x5 + -1x5 Combine like terms: -3x3 + 3x3 = 0 18x2 + 3x3 + -4x4 + -1x5 = 0 + 4x4 + -4x4 + x5 + -1x5 18x2 + 3x3 + -4x4 + -1x5 = 4x4 + -4x4 + x5 + -1x5 Combine like terms: 4x4 + -4x4 = 0 18x2 + 3x3 + -4x4 + -1x5 = 0 + x5 + -1x5 18x2 + 3x3 + -4x4 + -1x5 = x5 + -1x5 Combine like terms: x5 + -1x5 = 0 18x2 + 3x3 + -4x4 + -1x5 = 0 Factor out the Greatest Common Factor (GCF), 'x2'. x2(18 + 3x + -4x2 + -1x3) = 0Subproblem 1
Set the factor 'x2' equal to zero and attempt to solve: Simplifying x2 = 0 Solving x2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x2 = 0 Take the square root of each side: x = {0}Subproblem 2
Set the factor '(18 + 3x + -4x2 + -1x3)' equal to zero and attempt to solve: Simplifying 18 + 3x + -4x2 + -1x3 = 0 Solving 18 + 3x + -4x2 + -1x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
x = {0}
| 2j+13=9j-1 | | y=4E-06x-0.0872 | | 3k+k=2k-14 | | y=x^2(x-2)[(x+3)(x+3)] | | 216x+1=6 | | 5t^2+10t-45=0 | | 15x^3+15x^2-50x= | | 70x-75=0 | | x^4-9y+2=0 | | 7x^4-44x^2-35=0 | | w(w-6)=-13 | | 6x(5x-3)=0 | | -41-17+x=-46 | | 1-19q=3q-10 | | 6a-27=2a-15 | | 5t^2-57t+29=0 | | 2m^2=5m+18 | | y-(2y-7)y=-10 | | 39=3x+1 | | y^2-11y+16=-3y+4 | | 2m=5m+18 | | 4(y-3)=-4y+36 | | n+21=2n | | 3x+9=16-2x | | -2v(-1)=21 | | (x+6)(x-4)=11 | | (3x+1)(2x-9)=0 | | 0=-16x^2+1444 | | -0.6(n-.7)=0.23-0.5n | | 13=3+27t-16t^2 | | 0=16x^2+1444 | | 10x^3+5x^2+6x+3=0 |